. Divers ouvrages . oir par Mi,N2,03,P4, &:c. cftau folide fait par le parallélogramme compofé du dia-mètre du cercle, &; de la circonférence dicelui éten-due en ligne droite , comme 3 à 8 par la conclufion pré-cédente. Nous fçavons aufli que lefpace compris entreles deux lignes A iiD &: A4Dcft égal au demi-cer-cle AHB, parce que les lignes dun des efpaccs font éga-les aux lignes de lautre cfpaces par la conftruétion :partant le double de lefpace eft égal au cercle entierAHBA, de forte que tout ce qui fe dira du cercle fedoit entendre dudit efpace doublé. Mais il a été démon-tré que le cylindr
. Divers ouvrages . oir par Mi,N2,03,P4, &:c. cftau folide fait par le parallélogramme compofé du dia-mètre du cercle, &; de la circonférence dicelui éten-due en ligne droite , comme 3 à 8 par la conclufion pré-cédente. Nous fçavons aufli que lefpace compris entreles deux lignes A iiD &: A4Dcft égal au demi-cer-cle AHB, parce que les lignes dun des efpaccs font éga-les aux lignes de lautre cfpaces par la conftruétion :partant le double de lefpace eft égal au cercle entierAHBA, de forte que tout ce qui fe dira du cercle fedoit entendre dudit efpace doublé. Mais il a été démon-tré que le cylindre de AB eft au folide qui fc fait lorf-que la figure A r 2 D j A tourne fur la ligne ou circon-férence AC, comme 8 à i, lefquels ^ joints à 3 quona trouvez ci-devant, font y , qui eft la raifon quil y adu. folide entier de la roulette, à fon cylindre ABDGdoublé -, car ABDC neft que la moitié de lefpace par-couru par la Roulette. Remarquez que ce folide qui eft au cylindre AD tour-. 310 Traite des Indivisible siné fur C , comme i à 4, ou z à 8 : cft celui que faitlefpace compris entre les deux lignes A 11 D & A 4 D ^qui eft égal à celui que feroit le demi-cercle AHB parla même révolution, parce que lune &: lautre figure aces lignes égales, &: pofécs en même diftanccs de AC,&: partant eft le quart dudit cylindre AD ; &: joignantledit folidc à celui qui fe fait par lefpace compris entre leslignes A 4 D &: AC , qui eft audit cylindre comme 3 à 8,on aura le folide fait par lefpace compris entre A iiD& AC, qui fera j, ledit cylindre AD étant 8. TRACER, SVR VN CYLINDRE DROIT un ejpace égal à la fuperficie dun cylindre obliquedonnéj ç^ dun feul trait de Compas. LE cercle BDCE eft la bafc dun cylindre oblique,les cotez duquel partans des points B, G, H , I,&c. vont obliquement rencontrer un autre cercle enhaut , qui eft lautre bafe du cylindre, &: eft parallè-le au premier BDCE : ) ce cercle peut être repréfcntépar
Size: 2040px × 1225px
Photo credit: © Reading Room 2020 / Alamy / Afripics
License: Licensed
Model Released: No
Keywords: ., bookcentury1600, bookdecade1690, bookpublish, booksubjectgeometry