Oculus artificialis teledioptricus, sive, Telescopium : ex abditis rerum naturalium & artificialium principiis protractum novâ methodo, eâque solidâ explicatum ac comprimis è triplici fundamento physico seu naturali, mathematico dioptrico et mechanico, seu practico stabilitum ... . • 11 ??,-? ? Mil:.I •?1, i ?t Quid pcrfphxras vi- Sphxrain-tegra. CAPUT VIILDe Spharisintegm ac dimickis ^ ^earum in refrtngendo ^ro^rietaubm* SPhserse vitrex , qiiariim in refringendo naturam prserenticapitcinvefti*gamuSjintelligi debent iblidse ejusdem diaphaneitatis ac denfitatis pertot
Oculus artificialis teledioptricus, sive, Telescopium : ex abditis rerum naturalium & artificialium principiis protractum novâ methodo, eâque solidâ explicatum ac comprimis è triplici fundamento physico seu naturali, mathematico dioptrico et mechanico, seu practico stabilitum ... . • 11 ??,-? ? Mil:.I •?1, i ?t Quid pcrfphxras vi- Sphxrain-tegra. CAPUT VIILDe Spharisintegm ac dimickis ^ ^earum in refrtngendo ^ro^rietaubm* SPhserse vitrex , qiiariim in refringendo naturam prserenticapitcinvefti*gamuSjintelligi debent iblidse ejusdem diaphaneitatis ac denfitatis pertotum,item perfectaj fphsericitatis , non quales eas fiint, quse obiter inoilicinis vitrariisefBanturintusvacux, aqua deindehmpida aut quovis ahopuriorehquoreimpletse, pauloaham ob medii diverfitatem in refringendisradiisnaturam habent: radii quoque in eas mcidentes fiipponuntur non ni-mium ab axe diflantes,ad ,necomnino ultra ^o^gtadus. Propofitio XXXIV. Theorema. Inteffa Jphi^ra radios a hriginqmjinje axi-paYallelos inctdentes unittojlffh<^ram addijlimtiam qtiartde -partis diametri. H Demon-{ 1& Slt fphsera AB adquamincidatpun-dlo Eradius DE axi HA^ parahc-ius. Dico, quod fada duplici re-fradtione pofl fph^eram concurrat cumaxe in pun6to G ad diflantiam B quasiequahs eft quart^ parti diametri A^ fesquidiamcter &: B G di-midfaipfiusBiT. Demonflratio. Radius D E vi pri-ma? refra£i:ionis per 4. hujusdirigeturad pundum /C, adeoque pro-cedethnca EFiT. AdpunClumFa ccn-tro C ducatur perpendicularis CFI ;eritprofecunda rcfradlione angulus in-chnationis CFE, cui per i^.primi ^quahs ic* FI. Quia vcro in egreflu vi-tri refradlio fit aperpendiculari, &: an-gulus refra6lionis debet cfTcmcdia parsinchnationisper Quod autemangulus GFKfit media pars didi an-guh KFI, GKFeftmedia parsdidi anguliinchnationis,fed GFK& GKF ^qualesfunt. Ergd ctiam Syntagma I.^apui VIIh 83 etiam angulus G F K efl media pars
Size: 1385px × 1804px
Photo credit: © The Reading Room / Alamy / Afripics
License: Licensed
Model Released: No
Keywords: ., bookcentury1600, bookdecade1680, bookidgric00033125, bookyear1685