. Commentarii Academiae scientiarum imperialis Petropolitanae. 3* FRQdLEMA. Sit igitur Sinus anguli SPZzrA cofinus ejus —C Sinus anguli s?Z—a - SZPzrP cofinus sZV—p - - VZ—.v cofinus z?s—t - - "Q^cotangcnsM ~<7 - - m Sinus bafeos - lateris PS radius zr r propter analogiam inter latcra et finus angulorum lateribus oppofitorum erit quoque. Sinus lateris SZrz-y, qiii ponatur rr/ejus cofi- nus ^g. Cum igitur iti triangulo SP2 latera omnia denominata fint, una cum angulis SP2, et SZP poteruut duae aequationes formari ope theorematis in. Please note that these images are extracted from scann


. Commentarii Academiae scientiarum imperialis Petropolitanae. 3* FRQdLEMA. Sit igitur Sinus anguli SPZzrA cofinus ejus —C Sinus anguli s?Z—a - SZPzrP cofinus sZV—p - - VZ—.v cofinus z?s—t - - "Q^cotangcnsM ~<7 - - m Sinus bafeos - lateris PS radius zr r propter analogiam inter latcra et finus angulorum lateribus oppofitorum erit quoque. Sinus lateris SZrz-y, qiii ponatur rr/ejus cofi- nus ^g. Cum igitur iti triangulo SP2 latera omnia denominata fint, una cum angulis SP2, et SZP poteruut duae aequationes formari ope theorematis in. Please note that these images are extracted from scanned page images that may have been digitally enhanced for readability - coloration and appearance of these illustrations may not perfectly resemble the original Imperatorskaia akademia nauk (Russia). Petropolis, Typis Academiae


Size: 1495px × 1671px
Photo credit: © The Book Worm / Alamy / Afripics
License: Licensed
Model Released: No

Keywords: ., bookauthorimperatorskaiaakademiana, bookdecade1720, bookyear1726