Philosophiae naturalis principia mathematica . Re$ DE ANALYSI. Res Exemplo patehit. 1. Si x^{=^ix-i) =y^ hoc eft, rf=i = », & ?« = x; EritTA;= ABD. 2. Si 41/^ (=4^0 =jy; Erit f^l { = Wx) = V x { = xl)=yi Erit ^;^! (=|i^x) = ABD. 4. Si-;^ ( = A:~*)=jy, id efl, fi a=i =n, & ;»=—z; Erit (—^a;^ =) —^~ (= l^ = ^^BD,infinite verfus * protenfae, quam Calculus .ponit negativam,propterea quod jacet exal-tera parte Linese & j. Si ^ ( = x) =j; Erit {—Cx^ =) rrj; =BD^.6. Si J i=x-) =jl ; Erit ia;T = iA;« =i ^ I = ± = Infinitae, qualis efl Area Hyperbo-fas ex utraque parie Lineae BD. Compofitar
Philosophiae naturalis principia mathematica . Re$ DE ANALYSI. Res Exemplo patehit. 1. Si x^{=^ix-i) =y^ hoc eft, rf=i = », & ?« = x; EritTA;= ABD. 2. Si 41/^ (=4^0 =jy; Erit f^l { = Wx) = V x { = xl)=yi Erit ^;^! (=|i^x) = ABD. 4. Si-;^ ( = A:~*)=jy, id efl, fi a=i =n, & ;»=—z; Erit (—^a;^ =) —^~ (= l^ = ^^BD,infinite verfus * protenfae, quam Calculus .ponit negativam,propterea quod jacet exal-tera parte Linese & j. Si ^ ( = x) =j; Erit {—Cx^ =) rrj; =BD^.6. Si J i=x-) =jl ; Erit ia;T = iA;« =i ^ I = ± = Infinitae, qualis efl Area Hyperbo-fas ex utraque parie Lineae BD. Compofitarum Curvarum ^adratura ex E G U L A If. Si valor ipjius y ex pluribus ijiiufmodi Terminis componitur,Area etiam componetur ex Areis quae a fmgulis Terminisemanant. Exempla Prima. Si A? -^-xl -iy ; Erit \x + \xi = ABD. Etenimfifemperfit jf=BF, &aI = FD,erit, ex prsEcedenteRegula,i;v5=fuperficieiAFB defcriptae per Lineam BF, & fjif^ =AFD defcriptae per DFj Quare hx+ ixi =toti ABD. Sicfi;v—Arl=r; Eriti^vj — fArl
Size: 1705px × 1466px
Photo credit: © The Reading Room / Alamy / Afripics
License: Licensed
Model Released: No
Keywords: ., bookauthornewtonisaacsir16421727, booksubj, booksubjectmechanics