Philosophiae naturalis principia mathematica . s primo lineas adopporita latera duftas parallelas ef-fe alterutri reliquorum laterum,puta T^&TR lateri y^C, &TSnc ^pr lateri JB. Sintque infuperlatera duo ex oppofitis , puta ^C&: B T> , fibi invicem refla quae bifecat parallcla illalatera erit una ex diametris Coni-cffi feaionis & bifecabit etiam R^Sit O punftum in quo R ^ bifeca- j^, tur,& erit TO ordinatim applicata ad diametrum illam. ProducyOad kut fit OK aequalis TO , & erit O K ordinatim applicata adcontrarias partes diametri. Cum igitur punfta A., B, & K fmt adConicam feft


Philosophiae naturalis principia mathematica . s primo lineas adopporita latera duftas parallelas ef-fe alterutri reliquorum laterum,puta T^&TR lateri y^C, &TSnc ^pr lateri JB. Sintque infuperlatera duo ex oppofitis , puta ^C&: B T> , fibi invicem refla quae bifecat parallcla illalatera erit una ex diametris Coni-cffi feaionis & bifecabit etiam R^Sit O punftum in quo R ^ bifeca- j^, tur,& erit TO ordinatim applicata ad diametrum illam. ProducyOad kut fit OK aequalis TO , & erit O K ordinatim applicata adcontrarias partes diametri. Cum igitur punfta A., B, & K fmt adConicam feftionem, & ? iiT fecet y^ ^ in dato angulo, erit (perProp. 17. & 18. Lib. III. Conicorum /IpoUonn) reftangulum T ^ Kad reftangulum J ^B in data ratione. Sed ^K & T R aqualesfunt, utpote sequalium O /v, O P, & O ^, O R difterentise , &inde eriam reftangula T &K & T ^X T R sequalia funt; atqueadeo reftimgulum T ^X /^ R eft ad redangulum ^^^jhoceiladreftangulum T SXTTin data ratione. £ E. ^.. Caf, PRINCIPIA MATHEMATICA. ^7


Size: 1762px × 1418px
Photo credit: © The Reading Room / Alamy / Afripics
License: Licensed
Model Released: No

Keywords: ., bookauthornewtonisaacsir16421727, booksubj, booksubjectmechanics