. Theory of structures and strength of materials. or 5. Parameter, etc.—Let /^,, //, be the elevations of Aand B, respectively, above the horizontal line COD, Fig. OD = rtj, 6^(7 = rt,, and let rt-, -j- «^ = « = equation (i), Art. 4, Case B, ^/^ V _f^ ^ 2// rt, ^2 <«, + ^2 _ ^ ^, 4- w ^h, Vh, Vh, + Vh, Vh, + Vh,Denote the parameter by P. Then 2// / P^ ? 1 /— z<y V ^^ tan (9 = . 27_ wx A H ^ Also, ^-^ ^ 7v. ^^- ? 712 THEORY OF STRUCTURES. If ^,, B^ be the values of 6^ at ^ and B, respectively.^ \f tan d^ = 2 a/^ and tan 0^ = 2 Jb., Note.—lih, = K = h, ^ ^^^ ^^\ (.^ a a 2 i^
. Theory of structures and strength of materials. or 5. Parameter, etc.—Let /^,, //, be the elevations of Aand B, respectively, above the horizontal line COD, Fig. OD = rtj, 6^(7 = rt,, and let rt-, -j- «^ = « = equation (i), Art. 4, Case B, ^/^ V _f^ ^ 2// rt, ^2 <«, + ^2 _ ^ ^, 4- w ^h, Vh, Vh, + Vh, Vh, + Vh,Denote the parameter by P. Then 2// / P^ ? 1 /— z<y V ^^ tan (9 = . 27_ wx A H ^ Also, ^-^ ^ 7v. ^^- ? 712 THEORY OF STRUCTURES. If ^,, B^ be the values of 6^ at ^ and B, respectively.^ \f tan d^ = 2 a/^ and tan 0^ = 2 Jb., Note.—lih, = K = h, ^ ^^^ ^^\ (.^ a a 2 i^ and hence ~Tca^*^ &, c Z \ Jl— Si \ -^ _ a -^ - ? \ ±^ - ^ ^ tan ^, =^ =tan 6^,. ^^ ^ « ^._ —— 6. Length of Arc of Cable.—Let OP = j, Fig. tan d = -jy, v*^/-^*^» ^ > sec^ OdO — -jjdx = -frds cos 6^, H dOds w cos^ dHence, r H P^ dO H 0 = -- / ——a = —jtan (9 sec 6^ + log, (tan 6 + sec ^)L 1 Again, w tan o = -^;ir, 9^ and ^exc^ / v-~^ ^v^^ ^ sec (^ = A / I -f- -^„;i;-. w ]y s = — 2W
Size: 3220px × 776px
Photo credit: © The Reading Room / Alamy / Afripics
License: Licensed
Model Released: No
Keywords: ., bookcentury1800, bookdecade1890, bookpublishernewyo, bookyear1896