. Airborne radar. Airplanes; Guided missiles. 4-10] SEA RETURN 213 As was shown in Paragraph 4-5, vertical polarization produces a much stronger field on and just above a reflecting surface than does horizontal polarization. Hence the scattering elements of the sea sur- face are more strongly illuminated if p^^. 4-35 Possible Geometry of Reflec- vertical polarization is used so that ted Wave from Sea Surface, sea clutter at low angles is much stronger with vertical than with horizontal polarization, assuming that the same for both polarizations. Because of the presence of reflected waves, the


. Airborne radar. Airplanes; Guided missiles. 4-10] SEA RETURN 213 As was shown in Paragraph 4-5, vertical polarization produces a much stronger field on and just above a reflecting surface than does horizontal polarization. Hence the scattering elements of the sea sur- face are more strongly illuminated if p^^. 4-35 Possible Geometry of Reflec- vertical polarization is used so that ted Wave from Sea Surface, sea clutter at low angles is much stronger with vertical than with horizontal polarization, assuming that the same for both polarizations. Because of the presence of reflected waves, the appropriate radar equa- tion for sea clutter is obtained from Equations 4-1 and 4-59: where F is a suitable average value of F'^. For a uniform distribution of a with height above the surface, Katzin^^ gives F = 6, R Rt (4-62b) where Rt is the transition range between the R~^ and R~^ regions. The simple plane surface reflection theory for a surface with a reflection coeffi- cient of — 1 gives Rt = 5hH/\ (4-63) where h is the radar height and H the height of the top of the target, which here is to be interpreted as the height of the wave tops above the equivalent reflecting plane. Since wave heights themselves are distributed in a statistical manner, and the location of the equivalent reflecting plane is not known, an empirical relation must be deduced from experiment. A limited amount of experimental evidence suggests the relation Rt = 2A//i/io/X (4-64) in which //i/iu is the crest-to-trough wave height exceeded by 10 per cent of the waves (a unit frequently used by oceanographers). A further consequence of the reflection interference phenomenon at very small depression angles is that the return no longer remains "area exten- ; The appearance of the sea clutter on an A scope then breaks up into a series of discrete echoes or "spikes" which appear much like individual targets. These can persist at fixed ranges for periods of a number of seconds. Fig. 4


Size: 2577px × 969px
Photo credit: © Library Book Collection / Alamy / Afripics
License: Licensed
Model Released: No

Keywords: ., bookcentury1900, bookcollectionbiodiversit, booksubjectairplanes