Philosophiae naturalis principia mathematica . Si radices duae funr aequales & tertia eft figni contrarii, CurvaeillaeHyperbolo-parabolicae junguntur fefe decuffando in morem crucis{P%-55^ ^^(\\1Q Species quinquagefma prima. .- Si radices duae funt inEequales & ejufdem figni & tertia eft fignicontrarii, figura evadet Hyperbola Anguihea circa Afymptoton AG»{Fig. 56.) cum Parabola eonjugata. Et hsc eft Species quinquagefmafecunda. 5 > \ io- V. l S7 ^ \ ^ \ / ift / < 1 . [ ^ [ X ^ 8. Tie TERTIIORDINIS. 89 8. De Hyperbolis quatmr Parabolkis Dtametrumhabenttbus. - In alrero cafu ubi terminus
Philosophiae naturalis principia mathematica . Si radices duae funr aequales & tertia eft figni contrarii, CurvaeillaeHyperbolo-parabolicae junguntur fefe decuffando in morem crucis{P%-55^ ^^(\\1Q Species quinquagefma prima. .- Si radices duae funt inEequales & ejufdem figni & tertia eft fignicontrarii, figura evadet Hyperbola Anguihea circa Afymptoton AG»{Fig. 56.) cum Parabola eonjugata. Et hsc eft Species quinquagefmafecunda. 5 > \ io- V. l S7 ^ \ ^ \ / ift / < 1 . [ ^ [ X ^ 8. Tie TERTIIORDINIS. 89 8. De Hyperbolis quatmr Parabolkis Dtametrumhabenttbus. - In alrero cafu ubi terminus ey deefl & figura Diametrum ha-bet , fi duae radices aequationis hujus ^x^ + rx + ^^o funt impof-fibiles, duae habentur figuras Hyperbolo-parabolics a DiametroAB {Fig. si-) hinc inde aequaliter diftantes. QuiE Species QHquin-quagefima tertia. Si aequationis illius radices duae funt impofTibiles, Figur» Hyper-boloparabolicas junguntur fefe decuflantes in morem crucis; & Spe-ciem quinquagejimam quartam cox\i\\iw\int. {Fi
Size: 1340px × 1866px
Photo credit: © The Reading Room / Alamy / Afripics
License: Licensed
Model Released: No
Keywords: ., bookauthornewtonisaacsir16421727, booksubj, booksubjectmechanics