. Buletinul Societatii de Sciinte din Bucuresci, România = Bulletin de la Société des sciences de Bucarest, Roumanie. Science. BULETINUL SOCIET??II DE SCIIN?E 29 de comun acord în verf-unul din congresele interna?ionale de ma- tematicenY. Dar t6te acestea cestiunî merit? s? fie tratate mat pe larg, de 6re-ce presint? un interes deosebit. Vom reveni decî în curend a- asupra lor cu desvolt?rile cuvenite. ASUPRA LEGILOR UNOR FOR?E CENTRALE DEDUSE DIN CONSIDERA?IUNEA HODOGRAPHULUI DE Dr. P. I. SUCHAR, MAESTRU DE CONFERIN?E LA UNIVERSITATE. înainte de a trata cestiunea care o am în vedere, vom expl
. Buletinul Societatii de Sciinte din Bucuresci, România = Bulletin de la Société des sciences de Bucarest, Roumanie. Science. BULETINUL SOCIET??II DE SCIIN?E 29 de comun acord în verf-unul din congresele interna?ionale de ma- tematicenY. Dar t6te acestea cestiunî merit? s? fie tratate mat pe larg, de 6re-ce presint? un interes deosebit. Vom reveni decî în curend a- asupra lor cu desvolt?rile cuvenite. ASUPRA LEGILOR UNOR FOR?E CENTRALE DEDUSE DIN CONSIDERA?IUNEA HODOGRAPHULUI DE Dr. P. I. SUCHAR, MAESTRU DE CONFERIN?E LA UNIVERSITATE. înainte de a trata cestiunea care o am în vedere, vom explica în pu?ine cuvinte ce se în?elege prin hodographul uneî curbe. Fie C, traiectoria descris? de un punct material M sub ac?iunea uneî for?e centrale F. Din punctul O centrul de atrac?iune, ducem segmente egale ?i paralele cu segmentele car! represint? vitesele punctului M în diferitele sale posi?iunî pe tra- iectoria sa. Locul extremit??ilor acestor seg- mente este o curb? H numit? hodographul traiectoriei C. Curba H se bucur? de pro- prietatea c? vitesa în punctul corespunz?tor M1? este paralel? ?i egal? cu for?a care so- licit? punctul M. Aceste propriet??i fiind reamintite. Imî propun a trata problema urmâtore : Hodographul în ca?ul unei for?e centrale fiind 0 conic? orî-care ar fi condi?iunele ini?iale, se cere legea for?ei Reamintim c? D. Laisant(Bull. de la Soc. Math. de France 1897) s'a ocupat cu problema în ca?ul particular când hodographul este un cerc. Fie x ?i y coordonatele unuî punct ore-care M al traiectorie* în raport cu un sistem de axe care trece prin centrul atractif, x' ?i y'. Please note that these images are extracted from scanned page images that may have been digitally enhanced for readability - coloration and appearance of these illustrations may not perfectly resemble the original Societatea de Stiinte din Bucuresti. Bucuresti : Societatea
Size: 1593px × 1569px
Photo credit: © Library Book Collection / Alamy / Afripics
License: Licensed
Model Released: No
Keywords: ., bookcentury1800, bookcollecti, bookdecade1890, booksubjectscience